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ABSTRACT

In this paper, we advocate the use of Grassmann manifolds
for discovering object images in different states (e.g., un-
ripe, peeled, etc.). We propose a novel dictionary learning
algorithm, which derives the subspaces on a Grassmann man-
ifold for describing each object state. By our introduced
geodesic-flow constraint, our Grassmann manifold exhibits
excellent capabilities in relating objects in distinct states
(i.e., subspaces on the derived manifold), while the geodesics
connecting different states can be viewed as transformations
between the associated states. This is the reason why the use
of our proposed Grassmann manifold can be applied to per-
form object state classification with improved performance.
In our experiments, we provide quantitative and qualitative
results to verify the effectiveness of our proposed method.

Index Terms— state recognition, classification, Grass-
mann manifold

1. INTRODUCTION

In the past few years, significant progress and improvements
have been observed for visual classification (e.g., object
recognition [1], scene recognition [2], or texture recognition
[3]). However, when it comes to recognize different states
of an observed object presented in an image, such problems
have not yet been well studied. Take the fruit of apple for
example (see Figure 1), a range of object states like unripe,
sliced, or even moldy can be expected when seeing an image
of apple. Since variations across different states are typically
large even for the same type of object, the problem of object
state discovery is a very challenging task.

Related to identifying different states of images, re-
searchers proposed to explore the attributes of images [4, 5].
Without determining the relationships between object states,
such information cannot be easily extended to object state
discovery due to the lack of ability of performing state pre-
diction. On the other hand, Xu et al. [6] presented a structured
logistic regression model with latent variables, with the goal
of classifying architecture styles of images. While relation-
ships between architecture styles were considered, explicit

(a) (b)

Fig. 1: Visualization of objects in different states on a Grassmann
manifold. (a) states of vegetables and fruits. (b) style of architec-
tures. For each state, its nearest neighbor is linked by an arrow.

definitions of deformable parts of textural/architectural re-
gions were required, which makes the proposed method not
applicable to general object style classification. Recently,
Isola et al. [7] chose to discover object states and their
relations in an image collection. Although promising per-
formance was achieved, the relations between object state
were predefined and cannot be automatically exploited from
training.

Subspace learning is also a popular learning approach,
which can be applied to visual classification tasks. For ex-
ample, both Chang et al. [8] and Huang et al. [9] aimed at
learning low-dimensional manifolds for describing face im-
ages with pose and illumination variations. As for action
recognition, Slama et al. [10] and Turaga et al. [11] chose
to model action images on a Grassmann manifold, and they
showed that such manifolds exhibit sufficient capabilities in
capturing image set variations.

Inspired by the above advances in subspace/manifold
learning, we propose to address object state discovery by
learning and exploring the associated Grassmann manifold.
While recent domain adaptation approaches like [12, 13]
have successfully considered such manifolds for recognizing
cross-domain images (e.g., training and test images captured
by different sensors), it is still a challenge to derive a proper
Grassmann manifold for the purpose of object state discov-
ery. As later detailed in Section 2, we propose a geodesic-flow
constrained dictionary learning for learning Grassmann man-
ifold, which can be applied for identifying and recognizing
different states of objects.
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The contributions of our paper can be summarized below:

• We are the first to explore the Grassmann manifold for
identifying and recognizing different states of object
images.

• We observe that subspaces derived on a Grassmann
manifold reflect the states of each object, while their
relationships can be properly modelled by geodesic
flow information.

• We propose a geodesic-flow constrained dictionary
learning algorithm, which allows us to exploit the re-
lationships between dictionaries of different states for
improved object state discovery.

2. OUR PROPOSED METHOD

2.1. Properties of Grassmann Manifold

For the completeness of discussions, we now provide a brief
review of the Grassmann manifold. Denoted as G(n, d), a
Grassmann manifold is a collection of all d-dimensional sub-
spaces of Rn, where n denotes the original feature dimension.
A subspace can be viewed as a point on a Grassmann mani-
fold, and each point on this manifold can be represented by an
orthonormal basis P (which does not need to be unique). If
span(P) = span(Q), then P and Q correspond to the same
point on a Grassmann manifold.

2.1.1. Similarity Measure on a Grassmann Manifold

For each pair of points (i.e., subspaces) on a Grassmann mani-
fold, we can calculate their similarity by their principal angles
[14]. More specifically, the principal angle can be computed
efficiently via singular value decomposition (SVD) of the in-
ner product of two subspaces P1 and P2, i.e.,

PT
1 P2 = U(cos(Θ))VT , (1)

where U and V are left and right-singular vectors of PT
1 P2,

respectively. The diagonal entries of cos(Θ) indicate the
associated principal angles. Thus, the similarity between two

subspaces on a Grassmann manifold is defined as
d∑

i=1

cos2(θi)

(recall that d is the dimension of the subspaces P1 and P2),
which can be computed by

∥∥PT
1 P2

∥∥2
F

[14].

2.1.2. Geodesic Flow on a Grassmann Manifold

Geodesic describes the shortest path between two subspaces
on a Grassmann manifold. The geodesic flow from subspaces
P1 to P2 can be written in a parametric form [15] as follows:

Ψ(t) = Qexp(tB)QTJ, t ∈ [0, 1], Ψ(0) = P1, Ψ(1) = P2.
(2)

Note that Q = [P1, null(P
T
1 )] is the orthogonal completion

of P1 that makes QTP1 = J, J indicates the first d columns
of a n-by-n identity matrix, and B is a skew-symmetric ma-
trix in the form of:[

0 AT

−A 0

]
,A ∈ R(n−d)×d.

With the above definitions, we have P2 = WP1 and W =
Qexp(B)QT . Thus, the matrix W can be viewed as a trans-
formation which projects P1 to P2 on the Grassmann mani-
fold.

2.2. Object State Discovery

2.2.1. Grassmann Manifolds via Geodesic-Flow Constrained
Dictionary Learning (GF-DL)

Assume that we observe data X of K different states, i.e.,
X = [X1,X2, . . . ,XK ] and Xi ∈ Rn×m, where n denotes
the original feature dimension and m is the number of in-
stances of each state. When exploring the Grassmann mani-
fold for describing the states of each object, we consider that
each subspace (i.e., each point) on the constructed manifold
corresponds to a particular state. Moreover, the relationship
between different states would satisfy the similarity observed
between the associated subspaces on this manifold.

Originally, principal components analysis (PCA) has been
widely used to perform subspace learning for the observed
image data subset (e.g., Xi) [12]. In other words, the cal-
culated eigenvectors of each Xi represent the subspace on a
Grassmann manifold. When it comes to exploring the Grass-
mann manifold for describing object states, one can directly
construct K sets of eigenvectors from each Xi. When rec-
ognizing the state of a test image, the reconstruction error of
the projected test image in each state can be considered as the
metric for performing state prediction.

However, the direct use of subspace learning techniques
like PCA for constructing Grassmann manifolds fails to dis-
cover and preserve the relationship between images of differ-
ent states. This is the reason why we propose a dictionary
learning based algorithm, Geodesic-Flow constrained Dictio-
nary Learning (GF-DL) for addressing the task of object state
discovery. Inspired by recent success of dictionary learning
approaches like [16], we aim at learning dictionary atoms for
describing each state of the observed images, while the de-
rived atoms of different states better describe the relative state
information.

Recall that, given two subspaces on a Grassmann man-
ifold, parametric form of geodesic between such two spans
can be presented in terms of a transformation. That is, for two
dictionaries D1 and D2, there exists a transformation matrix
W satisfying span(WD1) = span(D2). In our proposed
GF-DL, we aim at learning dictionaries representing each ob-
ject state, while the geodesic between different states can be
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Algorithm 1 Geodesic-Flow Constrained Dictionary Learn-
ing (GF-DL) for Object State Discovery

Require: training data X1, . . . ,XK ; parameter η
1: initial d0 by PCA;
2: while not converge do
3: compute A?

i by OMP (4);
4: compute geodesic-flow constrained transformation

matrix W;
5: update D?

ref by (9);
6: update D?

i by (10);
7: end while

properly preserved. Thus, our GF-DL solves the following
optimization problem:

min
Di,Ai,Wi

K∑
i=1

‖Xi −DiAi‖2F − η
∑
i6=ref

∥∥(WiDref )TDi

∥∥2
F

s.t. ‖di‖22 = 1,
∥∥a(j)

∥∥ ≤ T0, Wi ∈ Set(Ψ),
(3)

where Xi denotes training image data of the ith state, Di

and Ai are the associated dictionary and coefficients to be
derived, respectively. The matrix Wi, which relates Di and
Dref , belongs to the set of transformation matrices as defined
in (2). We note that, among K different states, our GF-DL
randomly selects one state and takes the resulting dictionary
as Dref . From (3), we see that the first term minimizes the
reconstruction error between the observed image data and the
derived low-dimensional representation, while the introduced
second term enforces the geodesic flow constraint.

2.2.2. Optimization of GF-DL

It can be seen that, the objective function of (3) is not convex
in terms of Di, Ai, and Wi. However, it is convex when
any two of the three variables are fixed. By applying the
technique of alternative optimization (as did in [17]), we can
learn Di and Ai, and update the transformation matrix Wi

accordingly for preserving the relationships between different
object states [13].

Updating Ai: We first update each Ai by fixing the dictio-
naries Di and the transformation matrix Wi. The objective
function shown below for updating Ai can be easily solved
by Orthogonal Matching Pursuit (OMP) [18]:

min
Ai

‖Xi −DiAi‖2F

s.t.
∥∥a(j)

∥∥ ≤ T0. (4)

Updating Wi: When solving Wi, we fix variables other than
Wi. Recall that the span of one subspace on a Grassmann

manifold can be transformed to another span by multiply-
ing the transformation matrix W. Based on span(Di) =
span(WiDref ) and (2), we have P2 = WP1 and W =
Qexp(B)QT . Let P1 = Dref and P2 = Di, we first derive
orthogonal completion Q of Dref , which is

[
Dref , null(D

T
ref )

]
.

To calculate B, we compute CS decomposition of QTDi:

QTDi =

[
V1, 0
0, V2

] [
Γ
−Σ

]
VT . (5)

The diagonal entries of Γ and Σ are the cosines and sines
of principal angles between Dref and Di, and we obtain

B =

[
0 AT

−A 0

]
, where A = V1 sin−1(Σ)V2.

Updating Dref and Di: To update the reference dictionary
Dref , we fix Ai, Wi and the remaining Di. The objective
function to be solved has the following form:

min
Dref

‖Xref −DrefAref‖2F − η
∑
i6=ref

∥∥(WiDref )TDi

∥∥2
F

s.t ‖dref‖22 = 1.
(6)

We note that, the dictionary Dref is optimized by sequen-
tially updating its columns. To solve the `th column d`, we
can simply ignore the irrelevant ones and rewrite the objective
function as:

g(d`) =

∥∥∥∥∥∥Xref −
∑
j 6=`

dja(j) − d`a(`)

∥∥∥∥∥∥
2

F

−η
K∑

i 6=ref

∥∥∥DT
i Wid

`
∥∥∥2
F
.

(7)
Let X̂ = Xref −

∑
j 6=` dja(j), the objective function can be

further simplified as:

g(d`) =
∥∥∥X̂− d`a(`)

∥∥∥2
F
− η

∑
i 6=ref

∥∥DT
i Wid

`
∥∥2
F
. (8)

Now, we can calculate the optimal d` by letting ∂g(d`)
∂d` = 0,

i.e.,

d`? =

∥∥a(`)

∥∥2
2
− η

∑
i 6=ref

WT
i DiD

T
i Wi

−1 X̂aT
(`). (9)

Since the column vectors of each dictionary need to be of unit
length, we normalize the dictionary after the above derivation,
i.e., d` = d`/

∥∥d`
∥∥. We also require the re-scaling of the

corresponding a(`) by a(`) =
∥∥d`
∥∥a(`).

Similar to the update of Dref , we calculate Di with the
other variables fixed. The optimal d` can be derived by letting
∂g(d`)
∂d` = 0. With the normalization of d` and re-scaling of

a(`), we have:

d`? =
(∥∥a(`)

∥∥2
2
− ηWiDrefDT

refWT
i

)−1
X̂aT

(`). (10)

The pseudo code of our proposed method is summarized in
Algorithm 1.
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(a) (b)
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Fig. 2: Visualization of object images in different states via t-SNE.
While (a) indicates the direct use of CNN features for describing
object images in different states, the use of our derived Grassmann
manifold for identifying tomatoes and all object categories in differ-
ent states are shown in (b) and (c), respectively.

3. EXPERIMENTS

3.1. State Classification of Fruits and Vegetables

We now conduct our first experiments on object state classi-
fication using the dataset provided in [19]. We choose ob-
ject images in 6 states (i.e., diced, moldy, peeled, pureed,
sliced, and unripe) from 10 objects: apple, banana, berry,
fruit, lemon, orange, pear, persimmon, potato, tomato, and
vegetable.

To describe each object image, we apply Caffe [20] to
pre-train a convolutional neural network (CNN) on the Ima-
geNet database, and use CNN as the feature extractor. We
select object images in different states from the categories
of apple and lemon as the training set, and those in the re-
maining categories as the test images. For our GF-DL al-
gorithm, the dictionary size is set as 20 for every state with
T0 = 5 and η = 0.4. To compare the classification per-
formance (using CNN as the feature extractor), we consider
linear SVM [21], PCA, K-SVD [19], Label Consistent K-
SVD (LC-KSVD) [22], and Fisher Discrimination Dictionary
Learning (FDDL) [23], in which SVM can be considered as
the baseline method.

Table 1 lists the recognition rates of different methods. It
can be seen from Table 1 that dictionary-learning based meth-
ods (PCA, K-SVD, LC-KSVD, FDDL, and our GF-DL) de-
liver better classification performance than SVM. Among all
test methods, our GF-DL achieves the best classification per-
formance. We note that both LC-KSVD and FDDL utilize
additional label information for dictionary learning, but their
recognition rates are no better than that of K-SVD. This is be-

Table 1: Classification performance of different approaches.

SVM PCA K-SVD LC-KSVD FDDL GF-DL
44.92 51.97 55.8 54.5 48.8 57.35

Table 2: Classification performance of different approaches on Ar-
chitectural Style.

SVM PCA K-SVD LC-KSVD FDDL GF-DL
66.8 71.5 65.6 66.0 61.6 73.1

cause they do not exploit the relationships between different
states.

In addition to quantitative evaluation, we further visualize
the projected data in a lower-dimensional space. Figure 2 il-
lustrates the projection of object images with different states
in a 2D subspace by t-SNE [24]. We see that the use of our
proposed GF-DL results in improved state relationships in the
2D subspace as shown in Figures 2b and 2c. We also mea-
sure the similarities between different object states (i.e., sub-
spaces) on our Grassmann manifold. Based on the metric of
nearest neighbors, we plot the relationships between differ-
ent object states in Figure 1 (i.e., 1-NN graph). Figure 1a
depicts the transformation path between different states (e.g.,
unripe→peeled→sliced→diced). The above quantitative and
qualitative results support the effectiveness of our GF-DL for
object state discovery.

3.2. Style Classification of Architectures

The second experiment is conducted on 6 selected styles from
the Architectural Style dataset [6], in which the 6 architectural
styles are Baroque, Beaux-Arts, Byzantine, Colonial, Palla-
dia, and Romanesque. This relatively simple problem aims to
classify states (architectural style) of similar objects (build-
ings). The recognition rates of different methods are shown
in Table 2. From Table 2, our method still achieves the best
classification performance compared to other test methods. In
addition, our constructed dictionaries can also be used to es-
tablish the relationships between architectural styles as shown
in Figure 1b.

4. CONCLUSIONS

In this paper, we proposed a novel dictionary learning al-
gorithm to construct Grassmann manifolds, which can be
applied for solving the task of object state discovery. Due to
the introduced geodesic-flow constraint, we not only describe
each object state as a subspace on the constructed Grassmann
manifold, the relationship between different states can be
properly preserved. This is the reason why we can apply our
approach for recognizing different states of object images.
Finally, we provided experimental results on real-world ob-
ject images in different states. From both quantitative and
qualitative results, the use of our approach for object state
discovery can be successfully verified.
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